题目内容
10.已知角α的终点经过点P(3,-$\sqrt{3}$),则tanα的值是( )| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
分析 直接利用任意角的三角函数的定义,求解即可.
解答 解:角α的终点经过点P(3,-$\sqrt{3}$),则tanα=$\frac{y}{x}$=$\frac{-\sqrt{3}}{3}$.
故选:C.
点评 本题考查任意角的三角函数的定义的应用,考查计算能力.
练习册系列答案
相关题目
18.为了研究学生性别与是否喜欢数学课之间的关系,得到列联表如下:
并计算:K2≈4.545
参照附表,得到的正确结论是( )
| 喜欢数学 | 不喜欢数学 | 总计 | |
| 男 | 40 | 80 | 120 |
| 女 | 40 | 140 | 180 |
| 总计 | 80 | 220 | 300 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 有95%以上把握认为“性别与喜欢数学课有关” | |
| B. | 有95%以上把握认为“性别与喜欢数学课无关” | |
| C. | 在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课有关” | |
| D. | 在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课无关” |
5.已知a=tan$\frac{2π}{5}$,b=tan(-$\frac{2π}{3}$),c=cos$\frac{2π}{5}$,则a,b,c的大小关系是( )
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
2.已知m,n表示两条不同的直线,α、β表示两个不同的平面,下列命题中正确的是( )
| A. | 若m⊥α,m∥n,n?β,则α⊥β | B. | 若平面α⊥β,m⊥α,则m⊥β | ||
| C. | 若m∥α,α∥β,则m∥β | D. | 若直线m∥n,n?α,则m∥α |
19.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,G是C上一点,且满足$\frac{|G{F}_{1}|}{|G{F}_{2}|}$=9 则C的离心率的取值范围是( )
| A. | (1,$\frac{\sqrt{5}}{2}$) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{5}{4}$] |
9.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为( )
| A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{15}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $-\frac{{3\sqrt{15}}}{2}$ |