题目内容

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC上的点,PA=PD=AD=2BC=2,CD=
3

(1)求证:PE∥平面BDM; 
(2)求三棱锥P-MBD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)本小题是一个证明线面平行的题,一般借助线面平行的判定定理求解,连接BE,因为BC∥AD,DE=BC,所以四边形BCDE为平行四边形,连接EC交BD于O,连接MO,则MO∥PE,则根据线面平行的判定定理可知PE∥平面BDM.
(2)由于平面PAD⊥底面ABCD,PE⊥AD,由面面垂直的性质定理可知PE⊥底面ABCD,所以PE是三棱锥P-DBC的高,且PE=
3
,又因为VP-DMB可看成VP-DBC和VM-DBC差构成,由(1)知MO是三棱锥M-DBC的高,由此能求出三棱锥P-MBD的体积.
解答: (1)证明:连接BE,因为BC∥AD,DE=BC,
所以四边形BCDE为平行四边形
连接EC交BD于O,连接MO,则MO∥PE,
又MO?平面BDM,PE?平面BDM,
所以PE∥平面BDM.
(2)解:VP-DMB=VP-DBC-VM-DBC
由于平面PAD⊥底面ABCD,PE⊥AD,PE⊥底面ABCD,
所以PE是三棱锥P-DBC的高,且PE=
3

由(1)知MO是三棱锥M-DBC的高,MO=
3
2
S△BDC=
3
2

所以VP-DBC=
1
2
VM-DBC=
1
4
,则VP-DMB=
1
4
点评:本题考查直线与平面平行的证明,考查三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网