ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÔ²C£º$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©ºÍÖ±Ïßl£º$\left\{\begin{array}{l}{x=2++tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£¬¦ÁΪÇãб½Ç£©£¨1£©µ±¦Á=$\frac{¦Ð}{3}$ʱ£¬ÇóÔ²Éϵĵ㵽ֱÏßl¾àÀëµÄ×îСֵ£»
£¨2£©µ±Ö±ÏßlÓëÔ²CÓй«¹²µãʱ£¬Çó¦ÁµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Çó³öÔ²ºÍÖ±ÏߵįÕͨ·½³Ì£¬¼ÆËãÔ²Ðĵ½Ö±ÏߵľàÀëÅж¨Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬µÃ³ö¾àÀë×îСֵ£»
£¨2£©Çó³öÔ²¹ýµã£¨2£¬$\sqrt{3}$£©µÄÇÐÏßµÄÇãб½Ç£¬Ôò¦ÁµÄÖµ½éÓÚÁ½ÌõÇÐÏßµÄÇãб½ÇÖ®¼ä£®
½â´ð ½â£º£¨1£©Ô²µÄ±ê×¼·½³ÌΪ£¨x-1£©2+y2=1£¬
µ±$¦Á=\frac{¦Ð}{3}$ʱ£¬Ö±ÏßlµÄбÂÊΪ$\sqrt{3}$£¬ÇÒ¹ýµã£¨2£¬$\sqrt{3}$£©£¬
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪ3x-$\sqrt{3}$y-3=0£®
¡àÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=0£®
¡àÖ±ÏßlÓëÔ²Ïཻ£¬
¡àÔ²Éϵĵ㵽ֱÏßl¾àÀëµÄ×îСֵΪ0£®
£¨2£©µ±¦Á=$\frac{¦Ð}{2}$ʱ£¬Ö±ÏßlµÄ·½³ÌΪx=2£¬ÏÔÈ»ÓëÔ²ÏàÇУ®
ÉèÔ²¹ýµã£¨2£¬$\sqrt{3}$£©µÄÇÐÏß·½³ÌΪy-$\sqrt{3}$=k£¨x-2£©£¬¼´kx-y-2k+$\sqrt{3}$=0£®
¡àÔ²Ðĵ½ÇÐÏߵľàÀë$\frac{|k-2k+\sqrt{3}|}{\sqrt{{k}^{2}+1}}$=1£¬
½âµÃk=$\frac{\sqrt{3}}{3}$£®
¡àÇÐÏßµÄÇãб½ÇΪ$\frac{¦Ð}{6}$£®
¡ßÖ±ÏßlÓëÔ²Óй«¹²µã£¬
¡à$\frac{¦Ð}{6}¡Ü¦Á¡Ü\frac{¦Ð}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| A£® | $-\frac{2}{5}+\frac{1}{5}i$ | B£® | $\frac{2}{3}+\frac{1}{3}i$ | C£® | $\frac{2}{3}-\frac{1}{3}i$ | D£® | $-\frac{2}{5}-\frac{1}{5}i$ |
| A£® | a£¾b£¾c | B£® | a£¼b£¼c | C£® | a£¼c£¼b | D£® | b£¼c£¼a |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |