题目内容
偶函数f(x)在(-∞,+∞)内可导,且f'(1)=-2,f(x+2)=f(x-2),则曲线y=f(x)在点(-5,f(-5))处切线的斜率为( )
| A.2 | B.-2 | C.1 | D.-1 |
由f(x)在(-∞,+∞)内可导,对f(x+2)=f(x-2)两边求导得:
f′(x+2)(x+2)′=f′(x-2)(x-2)′,即f′(x+2)=f′(x-2)①,
由f(x)为偶函数,得到f(-x)=f(x),
故f′(-x)(-x)′=f′(x),即f′(-x)=-f′(x)②,
则f′(x+2+2)=f′(x+2-2),即f′(x+4)=f′(x),
所以f′(-5)=f′(-1)=-f′(1)=2,即所求切线的斜率为2.
故选A
f′(x+2)(x+2)′=f′(x-2)(x-2)′,即f′(x+2)=f′(x-2)①,
由f(x)为偶函数,得到f(-x)=f(x),
故f′(-x)(-x)′=f′(x),即f′(-x)=-f′(x)②,
则f′(x+2+2)=f′(x+2-2),即f′(x+4)=f′(x),
所以f′(-5)=f′(-1)=-f′(1)=2,即所求切线的斜率为2.
故选A
练习册系列答案
相关题目
已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(
)<f(x)的x取值范围是( )
| x+2 |
| A、(2,+∞) |
| B、(-∞,-1)∪(2,+∞) |
| C、[-2,-1)∪(2,+∞) |
| D、(-1,2) |
已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
)=0,则不等式f(log2x)>0的解集为( )
| 1 |
| 2 |
A、(0,
| ||||||
B、(
| ||||||
C、(0,
| ||||||
D、(0,
|