题目内容
18.分析 由茎叶统计图去掉一个最高分和一个最低分,所剩数据从小到大为84,84,84,86,87,93,由此能求出所剩数据的中位数.
解答 解:由茎叶统计图去掉一个最高分和一个最低分,
所剩数据从小到大为84,84,84,86,87,93,
∴所剩数据的中位数为:$\frac{84+86}{2}$=85.
故答案为:85.
点评 本题考查中位数的求法,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.
练习册系列答案
相关题目
9.
函数 f(x)=Asin(ω x+φ)(A>0,ω>0)的部分图象如图所示,则f($\frac{11π}{24}$)的值为( )
| A. | -$\frac{\sqrt{6}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | -1 |
13.已知数列{an}的通项公式为${a_n}=lg\frac{{{n^2}+3n+2}}{{{n^2}+3n}},n∈{N^*}$,则数列{an}的前n项和Sn=( )
| A. | $lg\frac{3}{n+3}$ | B. | $lg\frac{2}{n}$ | C. | $lg\frac{{3({n+1})}}{n+3}$ | D. | $lg\frac{{2({n+2})}}{n}$ |
10.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如表:
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
| 年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 人均纯收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
(1)求y关于t的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
19.已知回归方程为:$\widehat{y}$=3-2x,若解释变量增加1个单位,则预报变量平均( )
| A. | 增加2个单位 | B. | 减少2个单位 | C. | 增加3个单位 | D. | 减少3个单位 |