题目内容
【题目】设F1(﹣c,0)、F2(c,0)是椭圆
=1(a>b>0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1 , 则椭圆的离心率为( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】B
【解析】解:∵P是以F1F2为直径的圆与椭圆的一个交点,
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1 ,
∴∠PF1F2=15°,∠PF2F1=75°
∴|PF1|=|F1F2|sin∠PF2F1=2csin75°,∴|PF2|=|F1F2|sin∠PF1F2=2csin15°,
∴2a=|PF1|+|PF2|=2csin75°+2csin15°=4csin45°cos30°=
c
∴a=
c
∴e=
=
故选B.
练习册系列答案
相关题目