题目内容
7.求证:函数f(x)=x2+$\frac{2}{x}$在数集{x∈R|x>1}上是增加的.分析 直接利用函数的单调性的定义,证明即可.
解答 证明:任取x2>x1>1,函数值作差得
$\begin{array}{l}f({x_1})-f({x_2})=(x_1^2+\frac{2}{x_1})-(x_2^2+\frac{2}{x_2})=(x_1^2-x_2^2)+(\frac{2}{x_1}-\frac{2}{x_2})\\=({x_1}+{x_2})({x_1}-{x_2})+\frac{{2({x_2}-{x_1})}}{{{x_1}{x_2}}}=({x_1}-{x_2})\frac{{{x_1}{x_2}({x_1}+{x_2})-2}}{{{x_1}{x_2}}}\end{array}$
因为x1<x2,所以x1-x2<0,而x1x2>1>0,x1+x2>2,
所以x1x2(x1+x2)-2>0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函数$f(x)={x^2}+\frac{2}{x}$在数集{x∈R|x>1}上是增加的.
点评 本题考查函数的单调性的证明,考查计算能力.
练习册系列答案
相关题目
15.
正方形ABCD的边长为2,(如图),线段MN=1,当点M、N在正方形ABCD的边上滑动一周(保持MN的长度不变)时,线段MN的中点P的轨迹围成一个封闭图形E,现向正方形中随机投入一点,则该点落在E内的概率是( )
| A. | $\frac{7}{8}$ | B. | $\frac{π}{16}$ | C. | $1-\frac{π}{16}$ | D. | $\frac{3}{4}+\frac{π}{16}$ |
12.已知点A(1,2,2)、B(1,-3,1),点C在yOz平面上,且点C到点A、B的距离相等,则点C的坐示可以为( )
| A. | (0,1,-1) | B. | (0,-1,6) | C. | (0,1,-6) | D. | (0,1,6) |
19.已知i为虚数单位,复数z=a+bi(a,b∈R)的虚部b记作Im(z),则Im($\frac{-i}{1-i}$)=( )
| A. | -$\frac{1}{2}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |