题目内容

已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1)
(1)求数列{an}的通项公式;
(2)令Tn=
Sn
2n
,当n≥3时,求证:Tn>Tn+1
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出nSn+1-(n+1)Sn=n(n+1),两边同时除以n(n+1),得:
Sn+1
n+1
-
Sn
n
=1
,从而得到Sn=n(n+1),由此能求出an=2n.
(2)由Tn=
Sn
2n
=
n2+n
2n
,得到Tn-Tn+1=
n2+n
2n
-
(n+1)2+(n+1)
2n+1
=
(n-
1
2
)2-
9
4
2n+1
,由此能证明当n≥3时,Tn>Tn+1
解答: (1)解:∵nan+1=Sn+n(n+1),an+1=Sn+1-Sn
∴nSn+1-(n+1)Sn=n(n+1),
两边同时除以n(n+1),得:
Sn+1
n+1
-
Sn
n
=1

S1
1
=
a1
1
=2

∴{
Sn
n
}为等差数列,公差d=1,首项2,
Sn
n
=2+n-1=n+1,∴Sn=n(n+1)
∴an=Sn-Sn-1=[n(n+1)]-((n-1)n]=2n,
把n=1代入验证,满足,∴an=2n.
(2)证明:∵Tn=
Sn
2n
=
n2+n
2n

∴Tn-Tn+1=
n2+n
2n
-
(n+1)2+(n+1)
2n+1

=
2n2+2n
2n+1
-
n2+3n+2
2n+1

=
n2-n-2
2n+1

=
(n-
1
2
)2-
9
4
2n+1

由(n-
1
2
2-
9
4
≥0,得n≥2.
∴当n≥2时,Tn>Tn+1
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意作差法比较大小的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网