题目内容

11.写出下列各物质相互转化的化学方程式,并说明各步的反应类型.
化学方程式:反应类型:
①CH2=CH2+H2O $\stackrel{催化剂}{→}$CH3CH2OH加成反应
②CH3CH2OH $→_{170℃}^{浓硫酸}$CH2=CH2↑+H2O消去反应
③C2H5OH+CH3COOH$?_{△}^{浓硫酸}$CH3COOC2H5+H2O酯化反应
④CH3COOC2H5+H2O$\stackrel{△}{→}$C2H5OH+CH3COOH水解反应
⑤C2H5OH+HCl→C2H5Cl+H2O取代反应
⑥C2H5Cl+NaOH $→_{△}^{水}$C2H5OH+NaCl水解反应
⑦2C2H5OH+O2$→_{△}^{铜}$2CH3CHO+2H2O氧化反应.

分析 根据各物质相互转化的关系可知,
①乙烯与水加成生成乙醇;
②乙醇在浓硫酸条件下发生消去生成乙烯;
③乙醇与乙酸在浓硫酸条件下发生酯化反应;
④乙酸乙酯水解得乙醇;
⑤乙醇在一定条件下发生取代反应生成氯乙烷;
⑥氯代烃在碱性条件下水解生成醇;
⑦乙醇催化氧化得到乙醛.

解答 解:根据各物质相互转化的关系可知,
①乙烯与水加成生成乙醇,反应方程式为CH2=CH2+H2O $\stackrel{催化剂}{→}$CH3CH2OH,是加成反应;
②乙醇在浓硫酸条件下发生消去生成乙烯,反应方程式为CH3CH2OH $→_{170℃}^{浓硫酸}$CH2=CH2↑+H2O,是消去反应;
③乙醇与乙酸在浓硫酸条件下发生酯化反应,反应方程式为C2H5OH+CH3COOH$?_{△}^{浓硫酸}$CH3COOC2H5+H2O,是酯化反应;
④乙酸乙酯水解得乙醇,反应方程式为CH3COOC2H5+H2O$\stackrel{△}{→}$C2H5OH+CH3COOH,是水解反应;
⑤乙醇在一定条件下发生取代反应生成氯乙烷,反应方程式为C2H5OH+HCl→C2H5Cl+H2O,是取代反应;
⑥氯代烃在碱性条件下水解生成醇,反应方程式为C2H5Cl+NaOH $→_{△}^{水}$C2H5OH+NaCl,是水解反应;
⑦乙醇催化氧化得到乙醛,反应方程式为2C2H5OH+O2$→_{△}^{铜}$2CH3CHO+2H2O,是氧化反应,
故答案为:CH2=CH2+H2O $\stackrel{催化剂}{→}$CH3CH2OH;加成反应;CH3CH2OH $→_{170℃}^{浓硫酸}$CH2=CH2↑+H2O;消去反应;C2H5OH+CH3COOH$?_{△}^{浓硫酸}$CH3COOC2H5+H2O;酯化反应;CH3COOC2H5+H2O$\stackrel{△}{→}$C2H5OH+CH3COOH;水解反应;C2H5OH+HCl→C2H5Cl+H2O;取代反应;C2H5Cl+NaOH $→_{△}^{水}$C2H5OH+NaCl;水解反应;2C2H5OH+O2$→_{△}^{铜}$2CH3CHO+2H2O;氧化反应.

点评 本题考查了化学方程式的书写,明确乙醇的结构和性质是解题的关键,注意标注化学反应的条件,题目难度不大.

练习册系列答案
相关题目
2.CO2作为未来碳源,既可弥补因石油、天然气等大量消耗引起的“碳源危机”,又可有效地解决温室效应.目前,人们利用光能和催化剂,可将CO2和H2O(g)转化为CH4和O2.某研究小组选用不同的催化剂(a,b,c),获得的实验结果如图1所示,请回答下列问题:

(1)反应开始后的12小时内,在b(填a、b、c)的作用下,收集CH4的最多.
(2)将所得CH4与H2O(g)通入聚焦太阳能反应器,发生反应CH4(g)+H2O(g)?CO(g)+3H2(g)
△H=+206kJ•mol-1.将等物质的量的CH4和H2O(g)充入2L恒容密闭容器,某温度下反应5min后达到平衡,此时测得CO的物质的量为0.10mol,则5min内H2的平均反应速率为0.03mol/(L•min).平衡后可以采取下列AB的措施能使n(CO):n(CH4)增大.
A.加热升高温度
B.恒温恒压下充入氦气
C.恒温下缩小容器体积
D.恒温恒容下再充入等物质的量的CH4和H2O
(3)工业上可以利用CO为原料制取CH3OH.
已知:CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H=-49.5kJ•mol-1
CO2(g)+H2(g)?CO(g)+H2O(g)△H=+41.3kJ•mol-1
①试写出由CO和H2制取甲醇的热化学方程式CO(g)+2H2(g)?CH3OH(l)△H=-90.8kJ•mol-1
②该反应的△S<0(填“>”或“<”或“=”),在低温情况下有利于该反应自发进行.
(4)某科研人员为研究H2和CO合成CH3OH的最佳起始组成比n(H2):n(CO),在l L恒容密闭容器中通入H2与CO的混合气(CO的投入量均为1mol),分别在230℃、250℃和270℃进行实验,测得结果如图2,则230℃时的实验结果所对应的曲线是X(填字母);理由是该反应是放热反应,温度越低转化率越高.列式计算270℃时该反应的平衡常数K:$\frac{c(C{H}_{3}OH)}{c(CO)•{c}^{2}({H}_{2})}$=$\frac{0.5}{0.5×{1}^{2}}$=1.
6.近几年全国各地都遭遇“十面霾伏”.其中,机动车尾气和燃煤产生的烟气对空气质量恶化贡献较大.
(1)汽车尾气净化的主要原理为:2NO(g)+2CO(g)$\stackrel{催化剂}{?}$2CO2(g)+N2(g)△H<0
若该反应在绝热、恒容的密闭体系中进行,下列示意图正确且能说明反应在进行到t1时刻达到平衡状态的是BD(填代号).

(图2中V(正)、K、n、w分别表示正反应速率、平衡常数、物质的量、质量分数)
(2)光气 (COCl2)是一种重要的化工原料,用于农药、医药、聚酯类材料的生产,工业上通过Cl2(g)+CO(g)?COCl2(g)制备.图3为此反应的反应速率随温度变化的曲线,右图为某次模拟实验研究过程中在1L恒容容器内各物质的浓度随时间变化的曲线.回答下列问题:
①0-6min内,反应的平均速率v(Cl2)=0.15 mol•L-1•min -1
②若保持温度不变,在第7min 向体系中加入这三种物质各2mol,则平衡向正反应方向移动(填“向正反应方向”、“向逆反应方向”或“不”);
③若将初始投料浓度变为c(Cl2)=0.7mol/L、c(CO)=0.5mol/L、c(COCl2)=0.5         mol/L,保持反应温度不变,则最终达到化学平衡时,Cl2的体积分数与上述第6min时Cl2的体积分数相同;
④随温度升高,该反应平衡常数变化的趋势是减小;(填“增大”、“减小”或“不变”);
⑤比较第8min反应温度T(8)与第15min反应温度T(15)的高低:T(8)<T (15)(填“<”、“>”或“=”).
16.(1)某温度下,Kw=10-12.若保持温度不变,向少量水中加入400g的NaOH固体,并加水稀释至1L,才能使溶液中水电离产生的H+、OH-的浓度乘积即:c(H+•c(OH-=10-26.若保持温度不变,向水中通入的HCl气体恰好使溶液中c(H+)/c(OH-)=1010,则此时水电离的c(OH-)=10-11mol•L-1
(2)一定温度下,现有a.盐酸,b.硫酸,c.醋酸 三种酸
①当三种酸体积相同,物质的量浓度相同时,使其恰好完全中和所需NaOH的物质的量由大到小的顺序是b>a=c.(用a、b、c表示)
②当三者c(H+)相同且体积也相同时,分别放入足量的锌,相同状况下产生气体的体积由大到小的顺序是c>a=b.(用a、b、c表示)
③当c(H+)相同、体积相同时,同时加入形状、密度、质量完全相同的锌,若产生相同体积的H2(相同状况),则开始时反应速率的大小关系为a=b=c.(用a、b、c表示)
(3)现有两瓶pH=2的盐酸和醋酸溶液,简述如何用最简单的方法区别盐酸和醋酸.(限选试剂:石蕊试液、酚酞试液、pH试纸、蒸馏水).采用的方法为各取等体积醋酸和盐酸用蒸馏水稀释相同倍数(如100倍),然后用pH试纸分别测其pH值,pH值变化大的是盐酸.
(4)执信中学A学生为了测定某烧碱样品的纯度,准确称量8.2g含有少量中性易溶杂质的样品,配成500mL待测溶液.用0.200 0mol•L-1的标准盐酸进行滴定,选择甲基橙作指示剂,试根据实验回答下列问题:
①滴定过程中,眼睛应注视锥形瓶中溶液颜色变化;滴定终点时,溶液从黄色变为橙色,并且半分钟内不恢复原来的颜色.
②观察酸式滴定管液面时,开始俯视,滴定终点平视,则滴定结果偏高(填“偏高”、“偏低”或“无影响”);若将锥形瓶用待测液润洗,然后再加入10.00mL待测液,则滴定结果偏高(填“偏高”、“偏低”或“无影响”).
③根据如表数据,通过标准酸滴定,计算待测烧碱溶液的物质的量浓度是0.4000 mol•L-1,烧碱样品的纯度是97.56%.(本小题计算结果保留4位有效数字)
滴定次数待测溶液
体积(mL)
标准酸体积
滴定前的刻度(mL)滴定后的
刻度(mL)
第①次10.000.4020.50
第②次10.004.1024.00
第③次10.002.2023.80
3.亚硝酸氯(ClNO)是有机合成中的重要试剂.亚硝酸氯可由NO与Cl2在通常条件下反应得到,化学方程式为2NO(g)+Cl2(g)2ClNO(g).
(1)氮氧化物与悬浮在大气中的海盐粒子相互作用时会生成亚硝酸氯,涉及如下反应:
①4NO2(g)+2NaCl(s)?2NaNO3(s)+2NO(g)+Cl2(g)   K1
②2NO2(g)+NaCl(s)?NaNO3(s)+ClNO(g)         K2
③2NO(g)+Cl2(g)?2ClNO(g)                    K3
则K1,K2,K3之间的关系为K3=$\frac{{{K}_{2}}^{2}}{{K}_{1}}$.
(2)T℃时,2NO(g)+Cl2(g)?2ClNO(g)的正反应速率表达式为v=k cn(ClNO),测得速率和浓度的关系如表:
序号c(ClNO)/mol•L-1v/mol•L-1•s-1
0.303.6×10-8
0.601.44×10-7
0.903.24×10-7
n=2;k=4.0×10-7mol-1•L•s-1(注明单位).
(3)在2L的恒容密闭容器中充入4molNO(g)和2molCl2(g),在不同温度下测得c(ClNO)与时间的关系如图A:

①温度为T1时,能作为该反应达到平衡的标志的有bdf;
a.容器体积保持不变   b.容器压强保持不变       c.平衡常数K保持不变
d.气体颜色保持不变   e.v(ClNO)=v(NO)   f.NO与 ClNO的物质的量比值保持不变
②反应开始到10min时Cl2的平均反应速率v(Cl2)=0.05mol•L-1•min-1
③温度为T2时,10min已经达到平衡,该反应的平衡常数K=2L/mol(注明单位).
(4)一定条件下在恒温恒容的密闭容器中按一定比例充入NO(g)和Cl2(g),平衡时ClNO的体积分数φ随$\frac{n(NO)}{n(C{l}_{2})}$的变化图象如图B,则A、B、C三状态中,NO的转化率最小的是C点,当n(NO)/n(Cl2)=2.8时,达到平衡状态ClNO的体积分数φ可能是D、E、F三点中的F点.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网