题目内容

1.金属钨用途广泛,主要用于制造硬质或耐高温的合金,以及灯泡的灯丝.高温下,在密闭容器中用H2还原WO3可得到金属钨,其总反应为:WO3(s)+3H2(g)$\stackrel{高温}{?}$W(s)+3H2O(g)
(1)上述反应的化学平衡常数表达式为K=$\frac{{c}^{3}({H}_{2}O)}{{c}^{3}({H}_{2})}$.
(2)某温度下反应达平衡时,H2与水蒸气的体积比为2:3,则H2的平衡转化率为60%
(3)上述总反应过程大致分为三个阶段,各阶段主要成分与温度的关系如下表所示:
温度25℃~550℃~600℃~700℃
主要成分WO3    W2O5     WO2      W
第一阶段反应的化学方程式为2WO3+H2$\frac{\underline{\;高温\;}}{\;}$W2O5+H2O;假设WO3完全转化为W,则三个阶段消耗H2物质的量之比为1:1:4.
(4)已知:温度过高时,WO2(s)转变为WO2(g):
WO2(s)+2H2(g)?W(s)+2H2O (g)△H=+66.0kJ?mol-1
WO2(g)+2H2(g)?W(s)+2H2O (g)△H=-137.9kJ?mol-1
则WO2(s)?WO2(g),则WO2(s)?WO2 (g) 的△H=+203.9 kJ•mol-1

分析 (1)根据化学平衡常数概念:生成物浓度幂之积与反应物浓度幂之积之比可得,注意固体纯液体不写入;
(2)由反应方程式知,消耗的H2与生成的水的物质的量相等,假定H2与水蒸气的物质的量分别为2mol、3mol,再根据转化率=$\frac{物质的转化量}{物质的起始量}×100%$计算;
(3)由表中主要成分与温度关系可知,第一阶段反应为WO3与H2反应是W2O5,同时还生成H2O,配平书写方程式;
580℃时,温度介于550℃~600℃,固体为W2O5、WO2的混合物;
根据三个阶段的方程式进行计算三个阶段消耗H2物质的量之比;
(4)已知:①WO2(s)+2H2(g)═W(s)+2H2O (g)△H=+66.0kJ•mol-1
②WO2(g)+2H2(g)═W(s)+2H2O (g)△H=-137.9kJ•mol-1
根据盖斯定律,①-②可得.

解答 解:(1)反应WO3(s)+3H2(g)$\stackrel{高温}{?}$W(s)+3H2O(g),K=$\frac{{c}^{3}({H}_{2}O)}{{c}^{3}({H}_{2})}$,故答案为:K=$\frac{{c}^{3}({H}_{2}O)}{{c}^{3}({H}_{2})}$;
(2)由反应方程式知,消耗的H2与生成的水的物质的量相等,故H2的平衡转化率为$\frac{3mol}{2mol+3mol}×100%$=60%;
故答案为:60%;
(3)由表中主要成分与温度关系可知,第一阶段反应为WO3与H2反应是W2O5,同时还生成H2O,反应方程式为2WO3+H2$\frac{\underline{\;高温\;}}{\;}$W2O5+H2O,580℃时,温度介于550℃~600℃,固体为W2O5、WO2的混合物;
假定有2molWO3,由2WO3+H2$\frac{\underline{\;高温\;}}{\;}$W2O5+H2O、W2O5+H2$\frac{\underline{\;高温\;}}{\;}$2WO2+H2O、WO2+2H2$\frac{\underline{\;高温\;}}{\;}$W+2H2O,三个阶段消耗的氢气的物质的量之比为1mol:1mol:2mol×2=1:1:4,
故答案为:2WO3+H2$\frac{\underline{\;高温\;}}{\;}$W2O5+H2O;1:1:4;
(4)已知:①WO2 (s)+2H2 (g)?W (s)+2H2O (g);△H1=+66.0kJ•mol-1
②WO2 (g)+2H2?W (s)+2H2O (g);△H2=-137.9kJ•mol-1
根据盖斯定律,①-②得WO2(s)?WO2 (g),故该反应的△H=△H1-△H2=+203.9kJ•mol-1
故答案为:+203.9kJ•mol-1

点评 本题考查化学平衡常数的书写、化学平衡移动原理、化学平衡计算、盖斯定律等,题目选择的素材比较陌生,注意△H有符号,以考查学生的能力为主,难度中等.

练习册系列答案
相关题目
9.3-丁酮酸乙酯在有机合成中用途很广,广泛用于药物合成,也可用作食物的着香剂.常温下为无色液体,微溶于水,与乙醇、乙酸乙酯等以任意比例混溶,沸点181℃,100℃以上会少量分解.乙酸乙酯易挥发、微溶于水,沸点77℃.实验室以乙酸乙酯和金属钠为原料制备3-丁酮酸乙酯的原理及装置如下:
原理如图1,装置如图2:

制取过程:
①反应:向反应装置中加入32mL(0.32mol)乙酸乙酯,少量无水乙醇,1.6g(0.07mol)切细的金属钠,微热回流1.5-3小时,直至金属钠完全反应消失.
②产物后处理:反应后冷却至室温,卸下冷凝管,将烧瓶浸在冷水浴中,在摇动下加入32mL30%醋酸水溶液,使反应液分层,用分液漏斗分离出酯层,酯层用5%碳酸钠溶液洗涤,有机层放入干燥的锥形瓶中,加入无水碳酸钾至液体澄清.
③产品:将上述处理后的反应液在常压下蒸馏,除去未反应的乙酸乙酯,再改为减压蒸馏,得产品2.0g(3-丁酮酸乙酯相对分子质量为130,乙酸乙酯相对分子质量88).
回答下列问题:
(1)实验室制取乙酸乙酯的反应方程式是CH3COOH+CH3CH2OHCH3COOCH2CH3+H2O,反应类型是酯化反应.
(2)反应装置中加装干燥管的目的是防湿气进入反应体系中以保证反应体系干燥.
(3)两个装置中的冷凝管作用不相同(填“相同”或“不同”),冷却水进口分别为b和d(填图中字母).
(4)产物后处理中加醋酸的目的是中和生成的钠盐,使之变成产物,加碳酸钠的目的是除去酯中的醋酸(用方程式表示),加碳酸钾的目的是干燥产品.
(5)实验得到的产率是C(填序号).
A.40%        B.19%        C.22%        D.10%
16.羰基硫(O=C=S)广泛存在于以煤为原料的各种化工原料气中,能引起催化剂中毒、化学产品质量下降和大气污染.羰基硫的氢解反应和水解反应是两种常用的脱硫方法,其反应式分别为:
①氢解反应:COS(g)+H2(g)?H2S(g)+CO(g)△H1=+7KJ•mol-1
②水解反应:COS(g)+H2O(g)?H2S(g)+CO2(g)△H2
已知反应中相关的化学键键能数据如下:
化学键 C=O(CO2 C=O(COS) C=S H-S H-O
 E/(KJ•mol-1 803 742 577 339465
回答下列问题:
(1)在以上脱除COS的反应中,若某反应有1mol电子发生转移,则该反应吸收的热量为3.5KJ.
(2)已知热化学方程式CO(g)+H2O(g)?H2(g)+CO2(g)△H3 则△H3=-42KJ•mol-1
(3)氢解反应平衡后增大容器的体积,则正反应速率减小,COS的转化率不变(填“增大”或“减小”或“不变”).
(4)COS氢解反应的平衡常数K与温度T具有如下的关系式lgK=$\frac{a}{T}$+b,式中a和b均为常数.
①如图中,表示COS氢解反应的直线为z,判断依据为氢解反应为吸热反应,升高温度,k增大.
②一定条件下,催化剂A和B对COS的氢解均具有催化作用,相关数据如下表所示:
  达到平衡所需的时间/min a的数值 b的数值
 催化剂A t a1 b1
 催化剂B 2t a2b2
则a1=a2(填“>”或“<”或“=”),判断a1和a2大小的依据为K的数值只与温度有关,与催化剂无关.
③某温度下,在体积不变的容器中,若COS和H2的起始体积比为1:V,平衡后COS和H2的体积比为1:10V,则此温度下该反应的化学平衡常数K=$\frac{81V}{10(V-1)^{2}}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网