题目内容
1.甘蔗主要用于生产蔗糖,剩余的甘蔗渣去除渣髓后主要成分为纤维素.物质A能发生银镜反应,A、B、D、E、F、G为有机小分子,H、I为高分子,它们之间存在如下转化关系(部分反应条件及产物未列出).D是石油裂解气的主要成分,E的结构为请完成以下问题:
(1)F中所含官能团的名称:碳碳双键、羧基,A的分子式C6H12O6,反应④的反应类型为:加聚反应.
(2)反应③的化学方程式:
(3)写出C和E在一定条件下可生成一种可降解的高聚物的方程式
(4)写出满足以下条件的G的同分异构体的结构简式CH2=CHCH2CH2COOH.
①链式结构且分子中不含甲基 ②能与NaHCO3溶液反应产生CO2.
分析 物质A能发生银镜反应,A、B、D、E、F、G为有机小分子,H、I为高分子,它们之间存在如下转化关系(部分反应条件及产物未列出),D是石油裂解气的主要成分,则D为CH2=CH2,根据各物质的转化关系,甘蔗渣处理之后得到纤维素,纤维素水解的最终产物为A为葡萄糖,葡萄糖在酒化酶的作用下生成B为CH3CH2OH,C为CO2,乙烯与CO、水反应生成F为CH2=CHCOOH,B与F在浓硫酸条件下反应生成G为CH2=CHCOOCH2CH3,G发生加聚反应生成H为
,E的结构为
,C为CO2,E和C反应生成I为
,结合题目分析解答;
解答 解:物质A能发生银镜反应,A、B、D、E、F、G为有机小分子,H、I为高分子,它们之间存在如下转化关系(部分反应条件及产物未列出),D是石油裂解气的主要成分,则D为CH2=CH2,根据各物质的转化关系,甘蔗渣处理之后得到纤维素,纤维素水解的最终产物为A为葡萄糖,葡萄糖在酒化酶的作用下生成B为CH3CH2OH,C为CO2,乙烯与CO、水反应生成F为CH2=CHCOOH,B与F在浓硫酸条件下反应生成G为CH2=CHCOOCH2CH3,G发生加聚反应生成H为
,E的结构为
,C为CO2,E和C反应生成I为
,
(1)F为CH2=CHCOOH,F中所含官能团的名称为碳碳双键、羧基,A为葡萄糖,A的分子式 C6H12O6,根据上面的分析可知,反应④的反应类型为加聚反应,
故答案为:碳碳双键、羧基;C6H12O6;加聚反应;
(2)反应③的化学方程式为
,
故答案为:
;
(3)C和E在一定条件下可生成一种可降解的高聚物的方程式为
,
故答案为:
;
(4)G为CH2=CHCOOCH2CH3,根据条件①链式结构且分子中不含甲基,②能与NaHCO3溶液反应产生CO2,说明有羧基,则符合条件的G的同分异构体的结构简式为CH2=CHCH2CH2COOH,
故答案为:CH2=CHCH2CH2COOH.
点评 本题考查有机物推断,为高频考点,正确推断各物质结构简式是解本题关键,注意结合题给信息、反应条件进行推断,知道常见有机物官能团及其性质关系,难点是(5)题同分异构体种类判断,要考虑官能团位置异构、碳链异构,题目难度中等.
| A. | 该有机物的分子式为C10H20O2 | |
| B. | 该有机物与乙二醇、甘油互为同系物 | |
| C. | 1mol该有机物一定条件下与Na完全反应最多可生成22.4L氢气 | |
| D. | 该有机物一定条件下,可以发生取代、氧化、酯化反应 |
下列说法正确的是( )
| A. | 丙中一定含有羧基 | B. | 甲不可以与HBr发生取代反应 | ||
| C. | 甲、乙、丙都能发生氧化反应 | D. | 可以用溴水检验乙中的碳碳双键 |
| A. | 2015年诺贝尔化学奖颁给了研究细胞修复自身DNA机制的三位科学家.DNA属于有机高分子,化学家鲍林(L.Pauling)提出的氢键理论和蛋白质分子的螺旋结构模型,为DNA分子双螺旋结构模型的提出奠定了基础 | |
| B. | 生物炼铜是指铜矿石在细菌作用下可把不溶性的硫化铜转化为可溶性铜盐,使铜的冶炼变得简单 | |
| C. | 埃博拉病毒对化学药品敏感,乙醇、次氯酸钠溶液、双氧水均可以将病毒氧化而达到消毒的目的 | |
| D. | 扫描隧道显微技术、超分辨荧光显微技术等的发展促进了人类对微观结构的探索,可实现对原子或分子的操控,使科学研究迈入更高的水平层次 |
| A. | 放电时,电子通过固体电解质向Cu极移动 | |
| B. | 通空气时,铜被腐蚀,表面产生Cu2O | |
| C. | 放电时,正极的电极反应式为Cu2O+H2O+2e─=2Cu+2OH─ | |
| D. | 整个反应过程中,铜相当于催化剂 |
(1)将铅块制成铅花的目的是增大与酸的接触面积,加快溶解反应速率.
(2)31.05g铅花用5.00mol•L-1的硝酸溶解,至少需消耗5.00mol•L-1硝酸80mL.
(3)取一定质量(CH3COO)2Pb•nH2O样品在N2气氛中加热,测得样品固体残留率)($\frac{固体样品的剩余质量}{固体样品的起始质量}$×100%)随温度的变化如图2所示(已知:样品在75℃时已完全失去结晶水).
①(CH3COO)2Pb•nH2O中结晶水数目n=3(填整数).
②100~200℃间分解产物为铅的氧化物和一种有机物,则该有机物为C4H6O3(写分子式).
(4)称取一定质量的PbI2固体,用蒸馏水配制成室温时的饱和溶液,准确移取25.00mL PbI2饱和溶液分次加入阳离子交换树脂RH中,发生:2RH(s)+Pb2+(aq)═R2Pb(s)+2H+(aq),用锥形瓶接收流出液,最后用蒸馏水淋洗树脂至流出液呈中性,将洗涤液合并到锥形瓶中.加入2~3滴酚酞溶液,用0.002500mol•L-1NaOH溶液滴定,到滴定终点时用去氢氧化钠标准溶液20.00mL.则室温时PbI2 的Ksp为4.000×10-9.
(5)探究浓度对碘化铅沉淀溶解平衡的影响.
该化学小组根据所提供试剂设计两个实验,来说明浓度对沉淀溶解平衡的影响.
提供试剂:NaI饱和溶液、NaCl饱和溶液、FeCl3 饱和溶液、PbI2饱和溶液、PbI2悬浊液.
信息提示:Pb2+和Cl-能形成较稳定的PbCl42-络离子.
请填写下表的空白处:
| 实验内容 | 实验方法 | 实验现象及原因分析 |
| ①碘离子浓度增大对平衡的影响 | 取PbI2饱和溶液少量于一支试管中,再滴入几滴NaI饱和溶液 | 现象:溶液中c(I-)增大,使Q大于了PbI2的Ksp |
| ②铅离子浓度减小对平衡的影响 | 取PbI2悬浊液少量于一支试管中,再加入少量NaCl饱和溶液 | 现象:黄色浑浊消失 原因:形成PbCl42-,导致溶液中c(Pb2+)减小,使Qc小于PbI2的Ksp |
| ③铅离子和碘离子浓度都减小对平衡的影响 | 在PbI2悬浊液中滴入几滴FeCl3饱和溶液 | 现象:黄色浑浊消失 写出反应的离子方程式:PbI2+2Fe3++4Cl-=PbCl42-+2Fe2++I2 |