题目内容
16.| A. | 100N | B. | 150N | C. | 200N | D. | 300N |
分析 杠杆在水平位置平衡,动力F的力臂等于杠杆OB的长度,重力G的力臂为OA,再根据杠杆平衡条件计算出动力F的大小.
解答 解:重力G的力臂:OA=0.8m,F的力臂OB=OA+AB=0.8m+1.6m=2.4m,
由杠杆平衡条件得,F×OB=G×OA,
F×2.4m=300N×0.8m,
解得F=100N.
故选A.
点评 本题考查了杠杆平衡条件的应用,明确杠杆在水平位置平衡时,根据已知条件计算出力臂的长度是解题的关键,属于比较典型的题目.
练习册系列答案
相关题目
4.
如图所示,杠杆在水平位置处于平衡状态,杠杆上每格均匀等距,每个钩码都相同,下列四项操作中,会使杠杆左端下倾的是( )
| A. | 在杠杆两侧同时减掉一个钩码 | |
| B. | 在杠杆两侧的钩码下同时各加挂一个相同的钩码 | |
| C. | 将杠杆两侧的钩码同时各向外移动一个小格 | |
| D. | 在杠杆两侧的钩码下左侧加挂两个相同的钩码,右侧加挂3个相同的钩码 |
1.
某物理实验小组的同学在探究物体所受重力大小与物体质量的关系时,实验记录如下表:
(1)在实验过程中,需要的测量工具是天平和弹簧测力计.
(2)在上表空白处比值$\frac{G}{m}$的平均值为9.8N/kg.
(3)分析表中实验数据,得出结论是:物体受到的重力与质量成正比.
(4)重力方向的特点可利用如图所示的装置来研究.实验中发现,若图中的β角增大,α角会增大(选填“增大”、“减小”或“不变”).据此可知,重力方向总是竖直向下的,生活中用来检查墙壁砌得是否竖直的重垂线就是根据这个原理制成的.
| 被测物体 | 质量m(kg) | 重力G(N) | 比值 $\frac{G}{m}$(N/kg-1 ) | 比值 $\frac{G}{m}$的平均值(N/kg-1) |
| 物体1 | 0.5kg | 4.85 | 9.7 | |
| 物体2 | 0.8kg | 7.84 | 9.8 | |
| 物体3 | 1.0kg | 9.90 | 9.9 |
(2)在上表空白处比值$\frac{G}{m}$的平均值为9.8N/kg.
(3)分析表中实验数据,得出结论是:物体受到的重力与质量成正比.
(4)重力方向的特点可利用如图所示的装置来研究.实验中发现,若图中的β角增大,α角会增大(选填“增大”、“减小”或“不变”).据此可知,重力方向总是竖直向下的,生活中用来检查墙壁砌得是否竖直的重垂线就是根据这个原理制成的.
6.下列说法中,正确的是( )
| A. | 航空器常采用密度大、强度高的合金材料 | |
| B. | 用光年表示宇宙时间,用纳米量度分子大小 | |
| C. | 卫星通信、移动通信都是利用电磁波传递信息 | |
| D. | 手捏海绵,海绵体积变小,说明分子间有空隙 |