【题目】如图,正方形中,,点在上运动(不与重台),过点作,交于点,求运动到多长时,有最大值,并求出最大值.
【题目】如图,在中,, 垂足为平分,交于点,交于点.
(1)若,求的长;
(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
【题目】如图,在矩形中对角线与相交于点,,垂足为点,且,则的长为___________.
【题目】已知二次函数的与的部分对应值如表:
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则;⑥. 其中正确的个数是( )
A.B.C.D.
【题目】如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=( )
A. 1B. 2C. 3D. 4
【题目】如图1,已知抛物线y=﹣x+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C.
(1)求出直线BC的解析式.
(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQ⊥BC于Q,求出△MHQ周长最大值并求出此时M的坐标;当△MHQ的周长最大时在对称轴上找一点R,使|AR﹣MR|最大,求出此时R的坐标.
(3)T为线段BC上一动点,将△OCT沿边OT翻折得到△OC′T,是否存在点T使△OC′T与△OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由.
【题目】如图,边长为a的正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,EF与GH交于点P,连接AF、AH、FH.
(1)如图1,若a=1,AE=AG=,求FH的值;
(2)如图2,若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长l=a,求矩形EPHD的面积S与l的关系(只写结果,不写过程).
【题目】若一个正整数,它的各位数字是左右对称的,则称这个数是对称数.如,,都是对称数,最小的对称数是,但没有最大的对称数,因为数位是无穷的.
若将任意一个四位对称数分解为前两位数表示的数和后两位数表示的数,请你证明:这两个数的差一定能被整除;
设一个三位对称数为(),该对称数与相乘后得到一个四位数,该四位数前两位所表示的数和后两位所表示的数相等,且该四位数各位数字之和为8,求这个三位对称数.
【题目】时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.
(1)求6月份该品牌书包的销售单价;
(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?