【题目】小明想知道一堵墙上点A的高度(AO⊥OD),但又没有直接测量的工具,于是设计了下面的方案,请你先补全方案,再说明理由.
第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO;
第二步:使直杆顶端竖直缓慢下滑,直到∠ =∠ .标记此时直杆的底端点D;
第三步:测量 的长度,即为点A的高度.
说明理由:
【题目】小华与爸爸用一个如图所示的五等分、可以自由转动的转盘来玩游戏;将转盘随机转一次,指针指向的数字如果是奇数.爸爸获胜,如果是偶数,则小华获胜(指针指到线上则重转)
(1)转完转盘后指针指向数字2的概率是多少?
(2)这个游戏公平吗?请你说明理由.
【题目】已知:如图,AB∥CD,∠B=∠D.点EF分别在AB、CD上.连接AC,分别交DE、BF于G、H.求证:∠1+∠2=180°
证明:∵AB∥CD,
∴∠B=_____._____
又∵∠B=∠D,
∴_____=_____.(等量代换)
∴_____∥_____._____
∴∠l+∠2=180°._____
【题目】计算与化简
(1)(﹣2x)3x6÷(﹣3x3)2
(2)5m(m﹣n)﹣(5m+n)(m﹣n)
(3)利用简便方法计算:20202﹣2019×2021
(4)先化简,再求值:[(a+b)2﹣(a﹣b)(a+b)]÷(2b),其中a=﹣,b=﹣1.
【题目】如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm
【题目】如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
【题目】如图所示,已知∠B=∠C=90°,AM平分∠DAB,DM平分∠ADC.
(1)求证:M是BC的中点.
(2) 求证:AD=AB+CD.
(3)S△AMD=______S四边形ABCD.
【题目】如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A. 6 B. 3 C. 2 D. 4.5
【题目】根据下面的研究弹簧长度与所挂物体重量关系的实验表格,不挂物体时,弹簧原长_____cm;当所挂物体重量为3.5kg时,弹簧比原来伸长_____cm.
所挂物体重量x(kg)
1
3
4
5
弹簧长度y(cm)
10
14
16
18
【题目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度
A.①②③B.②④⑤C.①③⑤D.①③④⑤