【题目】为传播“绿色出行,低碳生活”的理念,小贾同学的爸爸从家里出发,骑自行车去图书馆看书,图1表达的是小贾的爸爸行驶的路程(米)与行驶时间(分钟)的变化关系
(1)求线段BC所表达的函数关系式;
(2)如果小贾与爸爸同时从家里出发,小贾始终以速度120米/分钟行驶,当小贾与爸爸相距100米是,求小贾的行驶时间;
(3)如果小贾的行驶速度是米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围。
【题目】如图所示,圆的周长为4个单位长度.在圆的4等 分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2019将与圆周上的数 字( )重合.
A.0B.1C.2D.3
【题目】已知(如图),点分别在边上,且四边形是菱形
(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);
(2)如果,点在边上,且满足,求四边形的面积;
(3)当时,求的值。
【题目】某市有两家出租车公司,收费标准不同,甲公司收费标准为:起步价8元,超过3千米后,超过的部分按照每千米1.5元收费;乙公司收费标准为:起步价11元,超过3千米后,超过的部分按照每千米1.2元收费,车辆行驶千米,本题中取整数,不足1千米的路程按1千米计费,根据上述内容,完成以下问题:
(1)当时,乙公司比甲公司贵______元;
(2)当,且为整数时,甲乙两公司的收费分别是多少?(结果用化简后的含的式子表示);
(3)当行驶路程为18千米时,哪家公司的费用更便宜?便宜多少?
【题目】如图,在直角坐标系中,直线与x轴相交于点A,与y轴相交于点B.
(1)直接写出A点的坐标__________;
(2)当x__________时,y≤4;
(3)过B点作直线BP与x轴相交于P,若OP=2OA时,求ΔABP的面积;
(4) 在y轴上是否存在E点,使得ΔABE为等腰三角形,若存在,直接写出满足条件的E点坐标.
【题目】小李和小陆从 A 地出发,骑自行车沿同一条路行驶到 B 地,他们离出发地的距离 s和行驶时间t之间的关系的图象如图,根据图象回答下列问题:
(1) 小李在途中逗留的时间为___________h,小陆从 A 地到 B 地的速度是________km/h;
(2) 当小李和小陆相遇时,他们离 B 地的路程是____________千米;
(3) 写出小李在逗留之前离 A 地的路程s和行驶时间t之间的函数关系式为_____________________.
【题目】端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.
(1)零售单价下降m元后,该店平均每天可卖出___只粽子,利润为___元;
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?
【题目】如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:
(1)旋转中心是什么?
(2)若旋转角为45°,边CD与A′D′交于F,求DF的长度.
【题目】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.
⑴BF= 厘米;
⑵求EC的长.
【题目】如图1是一个长为2a ,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是 ______.
(2)用两种不同的方法求图中阴影部分的面积.
(方法1)= _____________;
(方法2)=______________;
(3)观察如图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系.