【题目】如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xOy的原点O在格点上,x轴、y轴都在网格线上,△ABC的顶点A、B、C都在格点上.
(1)将△ABC向左平移两个单位得到△A1B1C1,请在图中画出△A1B1C1.
(2)△ABC和△A2B2C2关于原点O成中心对称,请在图中画出△A2B2C2.
(3)请写出C2的坐标 ,并判断以点B1、C1、B2、C2为顶点的四边形是 .
【题目】如图,在平面直角坐标系中,已知,,其中,满足,点为第三象限内一点.
(1)若到坐标轴的距离相等,,且,求点坐标
(2)若为,请用含的式子表示的面积.
(3)在(2)条件下,当时,在轴上有点,使得的面积是的面积的2倍,请求出点的坐标.
【题目】如图,在ABCD中,BE平分∠ABC,交AD于点E、F是BC上一点,且CF=AE,连接DF.
(1)求证:四边形BEDF是平行四边形;
(2)若∠ABC=70°,求∠CDF的度数.
【题目】某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威.可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.
(1)请你给出不同的租车方案(至少三种);
(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由.
【题目】在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.
(1)你认为小强的结果对吗?请说明理由.
(2)请你帮助小颖求出图中的x.
(3)你还有其他的设计方案吗?请在图(3)中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.
【题目】已知二次函数y=x2+2x﹣3,
(1)用描点法画出y=x2+2x﹣3的图象.
(2)根据你所画的图象回答问题:当x 时,函数值y随x的增大而增大,当x 时,函数值y随x的增大而减小.
解:列表得:
X
Y
描点、连线
【题目】如图,平分平分,则 ______ .
【题目】如图,抛物线与轴交于点,与轴交于、两点,其中、是方程的两根,且.
()求抛物线的解析式;
()直线上是否存在点,使为直角三角形.若存在,求所有点坐标;反之说理;
()点为轴上方的抛物线上的一个动点(点除外),连、,若设的面积为. 点横坐标为,则在何范围内时,相应的点有且只有个.
【题目】如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且DM=2,平行四边形ABCD的周长是14,则BC的长等于( )
A. 2B. 2.5C. 3D. 3.5
【题目】作图,思考并回答问题:如图,已知:ABC
(1)按下列要求作图:取边AB、AC的中点D、E,连结线段DE;
(2)用刻度尺测量线段 DE、BC的长度分别为 ;
(3)用量角器得B与 ADE的度数分别为 ;
(4)通过(2)、(3)你发现DE与BC什么关系?请写出你的猜想.