【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
【题目】如图,在平面直角坐标系中,四边形为边长为6的正方形,点为的中点,.动点在线段和上运动,另一动点在线段上运动.
用学过的知识解决下列问题:
(1)①填空:点的坐标____________________;
②求三角形的面积;
(2)求点在运动过程中,与的数量关系;
(3)两个动点在运动过程中,是否存在使线段的长等于2的时刻,如果存在,求出此时点坐标;如果不存在,请你说明理由.
【题目】已知,点分别为两条平行线上的一点,于.
(1)如图1,直接写出和之间的数量关系;
(2)如图2,连接,过点分别作和的角平分线交于点,.
①求的度数;
②探究和的数量关系并加以证明.
【题目】对于平面直角坐标系中的点,给出如下定义:若存在点(为正数),称点为点的等距点.例如:如图,对于点,存在点,点,则点分别为点的等距点.
(1)若点的坐标是,写出当时,点在第一象限的等距点坐标;
(2)若点的等距点的坐标是,求当点的横、纵坐标相同时的坐标;
(3)是否存在适当的值,当将某个点的所有等距点用线段依次连接起来所得到的图形周长不大于,求的取值范围.
【题目】某商场计划用3300元购进甲,乙两种商品共100个,这两种商品的进价、售价如下表:
进价(元/个)
售价(元/个)
甲种
25
30
乙种
45
60
(1)求甲、乙两种商品各进多少个?
(2)全部售完100个商品后,该商场获利多少元?
【题目】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为_____.
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
【题目】定义一种新的运算方式:(其中n≥2,且n是正整数),例如 ,.
(1)计算;
(2)若,求n;
(3)记,求y≤153时n的取值范围.
【题目】如图,△ABC内接于⊙O,AB=AC,过点A作AD⊥AB交⊙O于点D,交BC于点E,点F在DA的延长线上,且∠ABF=∠C .
(1)求证:BF是⊙O的切线;
(2)若AD=4,cos∠ABF=,求BC的长.
【题目】如图,在平行四边ABCD中,E、F分别是AB、DC上的点,且AE=CF,
(1)求证:△ADE≌△CBF;
(2) 当∠DEB=90°时,试说明四边形DEBF为矩形.