如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是(   )

A. B. C. D.

D 【解析】试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确. 故选D.

如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为(  )

A. 40° B. 45° C. 60° D. 70°

A 【解析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数. 【解析】 ∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC, ∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°. 故选A. “点睛”考查了平行...

如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(  )

A. 1 cm B. 2 cm C. 3 cm D. 4 cm

C 【解析】试题分析:根据中垂线的性质可得:BN=AN,则△BCN的周长=BN+NC+BC=AN+NC+BC=AC+BC=7cm,根据AC=4cm可得:BC=7-4=3cm.

下列命题中,其逆命题为真命题的是(  )

A. 若a=b,则a2=b2 B. 同位角相等

C. 两边和一角对应相等的两个三角形全等 D. 等腰三角形两底角不相等

C 【解析】根据互为逆命题的关系,题设和结论互换,可知: 若a=b,则a2=b2的逆命题为:若a2=b2,则a=b,是假命题; 同位角相等的逆命题为:相等的角是同位角,是假命题; 两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题; 等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题. 故选:C...

如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为(  )

A. B. 1 C. D. 2

B 【解析】试题解析:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2, ∴BE=CE=2, ∴∠B=∠DCE=30°, ∵CE平分∠ACB, ∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°, ∴∠A=180°-∠B-∠ACB=90°. 在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2, ∴AE=CE=1. ...

如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于(  )

A. 10 B. 7 C. 5 D. 4

C 【解析】作EF⊥BC于F, ∵BE平分∠ABC,ED⊥AB,EF⊥BC, ∴EF=DE=2, ∴S△BCE=BC?EF=×5×2=5, 故选C.

如图,△ABC和△DCE都是边长为2的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为(  )

A. 18 B. 3 C. 12 D. 2

D 【解析】过点D作DF⊥EC于点F,利用正三角形的性质得出CF=1,BF=3,再利用勾股定理求出DF==,则可得BD=. 故选:D.

如图,在△ABC中,AB=AC=5,BC=8,P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是(  )

A. 4.8 B. 4.8或3.8 C. 3.8 D. 5

A 【解析】试题分析:作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=CF=4,然后根据勾股定理求得AF=3,连接AP,根据△ABC的面积=△ABP的面积+△ACP的面积解出答案即可.

命题“全等三角形的面积相等”的逆命题是

面积相等的两个三角形全等 【解析】试题分析:把一个命题的题设和结论互换就可得到它的逆命题: “全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形.
 0  322171  322179  322185  322189  322195  322197  322201  322207  322209  322215  322221  322225  322227  322231  322237  322239  322245  322249  322251  322255  322257  322261  322263  322265  322266  322267  322269  322270  322271  322273  322275  322279  322281  322285  322287  322291  322297  322299  322305  322309  322311  322315  322321  322327  322329  322335  322339  322341  322347  322351  322357  322365  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网