阅读以下材料并填空.
平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?
(1)分析:当仅有两个点时,可连成1条直线;当仅有3个点时,可作______条直线;当有4个点时,可作______条直线;当有5个点时,可作______条直线;
(2)归纳:考察点的个数n和可作出的直线的条数Sn,发现:(填下表)
| 点的个数 | 可连成直线的条数 |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| … | |
| n |
(3)推理:______;
(4)结论:______.