题目内容
如图,在△ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE⊥AB于点E,DF⊥BC于点F,则EF的最小值为
- A.2.4
- B.3
- C.4.8
- D.5
C
分析:根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
解答:
解:如图,连接BD.
∵在△ABC中,AB=8,BC=6,AC=10,
∴AB2+BC2=AC2,即∠ABC=90°.
又∵DE⊥AB于点E,DF⊥BC于点F,
∴四边形EDFB是矩形,
∴EF=BD.
∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
∴EF的最小值为4.8,
故选:C.
点评:此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
分析:根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
解答:
∵在△ABC中,AB=8,BC=6,AC=10,
∴AB2+BC2=AC2,即∠ABC=90°.
又∵DE⊥AB于点E,DF⊥BC于点F,
∴四边形EDFB是矩形,
∴EF=BD.
∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
∴EF的最小值为4.8,
故选:C.
点评:此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
练习册系列答案
相关题目