13.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图 ①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上
∴CB=CB',C′B=C'B'
∴AC+CB=AC+CB′=AB'.
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
归纳小结:
本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.
求EF+FB的最小值
分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是$\sqrt{5}$.


如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是$\widehat{AD}$的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是2$\sqrt{2}$;
如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD的最小值,并写出取得最小值时P点坐标.
 0  286053  286061  286067  286071  286077  286079  286083  286089  286091  286097  286103  286107  286109  286113  286119  286121  286127  286131  286133  286137  286139  286143  286145  286147  286148  286149  286151  286152  286153  286155  286157  286161  286163  286167  286169  286173  286179  286181  286187  286191  286193  286197  286203  286209  286211  286217  286221  286223  286229  286233  286239  286247  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网