(2014•呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 .
(2015秋•驻马店期末)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
(2015•安阳二模)小明化简(﹣)÷后说:“在原分式有意义的前提下,分式的值一定是正数”,你同意小明的说法吗?请说明理由.
(2015秋•驻马店期末)如图,AB=AC,BD=DC,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:DE=DF.
(2015秋•驻马店期末)请阅读下列材料并回答问题:
在解分式方程时,小明的解法如下:
【解析】方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3=1①
去括号,得2x﹣1=3﹣1 ②
解得x=
检验:当x=时,(x+1)(x﹣1)≠0 ③
所以x=是原分式方程的解 ④
(1)你认为小明在哪里出现了错误 (只填序号)
(2)针对小明解分式方程出现的错误和解分式方程中的其他重要步骤,请你提出三条解分式方程时的注意事项;
(3)写出上述分式方程的正确解法.
(2013•北京)列方程或方程组解应用题:
某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.
(2015秋•驻马店期末)如图,已知△ABC.
(1)利用直尺和圆规,按照下列要求作图(保留作图痕迹,不要求写作法)
①作∠ABC的平分线BD交AC于点D;
②作线段BD的垂直平分线分别交AB、BC于点E、F.
(2)连接DE,请判断线段DE与线段BF的数量关系,并说明理由.
(2015秋•驻马店期末)小丽同学要画∠AOB的平分线,却没有量角器和圆规,于是她用三角尺按下面方法画角平分线:
①在∠AOB的两边上,分别取OM=ON;
②分别过点M、N作OA、OB的垂线,交点为P;
③画射线OP,则OP为∠AOB的平分线.
(1)请问:小丽的画法正确吗?试证明你的结论;
(2)如果你现在只有刻度尺,能否画一个角的角平分线?请你在备用图中试一试.(不需要写作法,但是要让读者看懂,你可以在图中标明数据)
(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN= 时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
(2015秋•利川市期末)一个数的倒数是它本身,则这个数是( )
A.1 B.﹣1 C.1或﹣1 D.1或﹣1或0