搜索
画出如图所示的由5个小立方块组成的几何体的三个视图.
计算:(
1
2
)
-1
-(
3
-2)
0
-|-3|+
4
.
课程学习:正方形折纸中的数学.
动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.
数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;
解决问题:
(3)如图3,按以下步骤进行操作:
第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;
第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;
第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.
已知x+y=4,xy=2,求
x
y
+
y
x
的值.
某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)求该厂第2个月的发电量及今年下半年的总发电量;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω
1
(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω
2
(万元)?
已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,-5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为
AC
2
,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.
已知关于x的方程mx
2
-(m+2)x+2=0(m≠0).
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.
(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);
(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:
2
≈1.41,
3
≈1.73,
6
≈2.45)
先化简,再求值:
2x
x
2
-1
-
1
x-1
,其中x=
2
-1.
下面合并同类项正确的是( )
A、2a+3b=5ab
B、2pq-4pq=-2pq
C、4m
3
-m
3
=3
D、-7x
2
y+2x
2
y=-9x
2
y
0
256997
257005
257011
257015
257021
257023
257027
257033
257035
257041
257047
257051
257053
257057
257063
257065
257071
257075
257077
257081
257083
257087
257089
257091
257092
257093
257095
257096
257097
257099
257101
257105
257107
257111
257113
257117
257123
257125
257131
257135
257137
257141
257147
257153
257155
257161
257165
257167
257173
257177
257183
257191
366461
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案