右表反映了x与y之间存在某种函数关系,现给出了几种可能的函数关系式:y=x+7,y=x-5, ,
如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E。已知C点的坐标是(6,),DE=3.(1)求反比例函数与一次函数的解析式。(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?
如图所示,制作一种产品,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?
已知反比例函数图象的两个分支分别位于第一、第三象限.(1)求的取值范围;(2)若一次函数的图象与该反比例函数的图象有一个交点的纵坐标是4.①求当时反比例函数的值;②当时,求此时一次函数的取值范围.
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点在第二象限;(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点的坐标;(2)请你通过改变P点的坐标,对直线M的解析式y﹦kx+b进行探究:①k= ;②若点P的坐标为(m,0),则b= ;(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)判断△OGA和△OMN是否相似,并说明理由;(2)求图象经过点A的反比例函数的解析式;(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.
如图,在平面直角坐标系中,反比例函数(,)的图象经过点(1,2),(,)(),过点B作轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为时,求点B的坐标;(3)在(2)的情况下,直线y=ax-1过线段AB上一点P(P不与A、B重合),求a的取值范围.
已知一次函数y=kx+k的图象与反比例函数y=的图像在第二象限交于点B(4,n),(1)求n的值 (2)求一次函数的解析式.
如图,点D在反比例函数( k>0)上,点C在轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.⑴ 求反比例函数的解析式;⑵ 点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直轴和轴,垂足分别为点A和点E,连结OB,将四边形OABE沿OB折叠,使A点落在点A′处,A′B与轴交于点F.求直线BA′的解析式.
制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?