题目内容
一组射击运动员的测试成绩如下表:则中位数是_____.
成绩
6
7
8
9
10
次数
1
2
4
5
若(am+1bn+2)•(a2n﹣1b2m)=a5b3,则m+n的值为( )
A. 1 B. 2 C. 3 D. ﹣3
如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.
如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上.点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,1cm半径作⊙O.点P与点D同时出发,设它们的运动时间为t(单位:s) (0≤t≤).
(1)如图1,连接DQ,若DQ平分∠BDC,则t的值为 s;
(2)如图2,连接CM,设△CMQ的面积为S,求S关于t的函数关系式;
(3)在运动过程中,当t为何值时,⊙O与MN第一次相切?
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1.
(2)点C1的坐标为( , ).
如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△ABF:S四边形CDEF=2:5;④cos∠CAD=.其中正确的结论有( ).
A. 4个 B. 3个 C. 2个 D. 1个
下列关于x的方程有实数根的是( )
A. x2﹣x+1=0 B. x2+x+1=0 C. x2﹣x﹣1=0 D. (x﹣1)2+1=0
(x7y4+x7z )÷x7等于( )
A. y4+z B. -4x2y4+xz C. x2y4+x2z D. x2y4+z
如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.
(1)DF∥AC吗,为什么?
(2)DE与AF的位置关系又如何?