题目内容

6.若二次函数y=ax2+bx,当x取x1,x2(x1≠x2)时,函数值相等,则x取x1+x2时,函数的值为0.

分析 由于ax12+bx1=ax22+bx2,移项后分解得到(x1-x2)(ax1+ax2+b)=0,而x1≠x2,所以ax1+ax2+b=0,即x1+x2=-$\frac{b}{a}$,然后把x=-$\frac{b}{a}$代入二次函数解析式中计算即可.

解答 0解:根据题意得ax12+bx1=ax22+bx2
ax12-ax22+bx1-bx2=0,
a(x1-x2)(x1+x2)+b(x1-x2)=0,
(x1-x2)(ax1+ax2+b)=0,
∵x1≠x2
∴ax1+ax2+b=0,即x1+x2=-$\frac{b}{a}$,
∴当x=x1+x2=-$\frac{b}{a}$时,y=a×(-$\frac{b}{a}$)2+b×(-$\frac{b}{a}$)=0.
故答案为0.

点评 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$),对称轴直线x=-$\frac{b}{2a}$,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当x<-$\frac{b}{2a}$时,y随x的增大而减小;x>-$\frac{b}{2a}$时,y随x的增大而增大;x=-$\frac{b}{2a}$时,y取得最小值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-$\frac{b}{2a}$时,y随x的增大而增大;x>-$\frac{b}{2a}$时,y随x的增大而减小;当x=-$\frac{b}{2a}$时,y取得最大值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最高点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网