题目内容

2.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.
(1)求证:BD=DF;
(2)求证:四边形BDFG为菱形;
(3)若AG=13,CF=6,求四边形BDFG的周长.

分析 (1)先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD;
(2)由邻边相等可判断四边形BGFD是菱形;
(3)设GF=x,则AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.

解答 (1)证明:∵∠ABC=90°,BD为AC的中线,
∴BD=$\frac{1}{2}$AC,
∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴DF=$\frac{1}{2}$AC,
∴BD=DF;
(2)证明:∵BD=DF,
∴四边形BGFD是菱形,
(3)解:设GF=x,则AF=13-x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2,即(13-x)2+62=(2x)2
解得:x=5,
∴四边形BDFG的周长=4GF=20.

点评 本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网