题目内容

9.如图,E、F分别是等边三角形ABC的边AB、AC上的点,且BE=AF,CE、BF交于点P,且EG⊥BF,垂足为G.
(1)求证:∠BCE=∠ABF;
(2)求证:PE=2PG.

分析 (1)证明△BCE≌△ABF(SAS),即可得到∠BCE=∠ABF;
(2)利用由(1)知∠BCE=∠ABF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根据在直角三角形中,30°所对的直角边等于斜边的一半.

解答 解:(1)∵△ABC为等边三角形,
∴BC=AB,∠A=∠EBC=60°,
在△BCE和△ABF中,
$\left\{\begin{array}{l}{BC=AB}\\{∠A=∠EBC}\\{BE=AF}\end{array}\right.$,
∴△BCE≌△ABF(SAS),
∴∠BCE=∠ABF;
(2)∵由(1)知∠BCE=∠ABF,
又∠PBC+∠ABF=∠ABC=60°,
∴∠PBC+∠PCB=60°,
∵∠PBC+∠PCB=∠BPE,
∴∠BPE=60°,
∵EG⊥BF,即∠PGE=90°,
∴∠GEP=30°,
∴在Rt△BCE中,PE=2PG.

点评 本题考查了全等三角形的性质定理与判定定理、直角三角形的性质,解决本题的关键是证明△BCE≌△ABF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网