题目内容


在矩形ABCD中,AB = 10,BC = 12,EDC的中点,

连接BE,作AFBE,垂足为F

(1)求证:△BEC∽△ABF

(2)求AF的长.

 



(1)证明:在矩形ABCD中,有

C=∠ABC=∠ ABF+EBC=90°,

         ∵AFBE,∴∠ AFB=∠ C=90°-

         ∴∠ABF+BAF =90°

         ∴∠BAF=∠EBC

         ∴△BEC∽△ABF

   (2)解:在矩形ABCD中,AB = 10,∴CD=AB=10,

EDC的中点,∴CE=5,

        又BC = 12,在Rt△BEC 中,由勾股定理得BE=13,

       由△ABF∽△BEC

      

       即

解得AF=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网