题目内容

如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:
①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.
其中正确的个数是(  )
A、1B、2C、3D、4
考点:平移的性质,等边三角形的性质,菱形的判定
专题:
分析:根据等边三角形的性质得AB=BC,再根据平移的性质得AB=DC,AB∥DC,则可判断四边形ABCD为菱形,根据菱形的性质得AD=BC,BD、AC互相平分;同理可得四边形ACED为菱形;由于BD⊥AC,AC∥DE,易得BD⊥DE.
解答:解:∵△ABC为等边三角形,
∴AB=BC,
∵等边△ABC沿射线BC向右平移到△DCE的位置,
∴AB=DC,AB∥DC,
∴四边形ABCD为平行四边形,
而AB=BC,
∴四边形ABCD为菱形,
∴AD=BC,BD、AC互相平分,所以①②正确;
同理可得四边形ACED为菱形,所以③正确;
∵BD⊥AC,AC∥DE,
∴BD⊥DE,所以④正确.
故选D.
点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了等边三角形的性质和菱形的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网