题目内容

3.在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的是(  )
A.①②B.①③C.②③④D.①②④

分析 根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.

解答 解:如图,∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正确;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正确.
故选D.

点评 本题主要考查了角平分线的性质,是一道结论开放性题目,考查了学生利用角平分线的性质解决问题的能力,有利于培养发散思维能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网