题目内容

7.如图,边长为2的等边三角形ABC,点A,B分别在y轴和x轴正半轴滑动,则原点O到C的最长距离(  )
A.$\sqrt{3}-1$B.$\sqrt{5}$C.$\sqrt{2}+1$D.$\sqrt{3}+1$

分析 由题意得到当OA=OB,即三角形AOB为等腰直角三角形时,OC最大,画出相应的图形,连接OC,交AB与点D,由对称性得到OC垂直于AB,利用三线合一得到D为AB的中点,利用斜边上的中线等于斜边的一半表示出OD的长,在直角三角形BCD中,利用勾股定理表示出CD的长,由OD+DC即可求出OC的长.

解答 解:取AB的中点D,连接OD,CD,
在△OCD中,OC<OD+CD,
只有当O,D,C三点在一条线上时,OC=OD+CD,此时OC最大,如图所示,OC⊥AB,
∵△AOB为等腰直角三角形,AB=2,
∴OD=$\frac{1}{2}$AB=1,
在Rt△BCD中,BC=2,BD=1,
根据勾股定理得:CD=$\sqrt{B{C}^{2}-B{D}^{2}}$=$\sqrt{3}$,
∴OC=$\sqrt{3}$+1.
故选:D.

点评 此题考查了直角三角形斜边上的中线性质,等边三角形的性质,以及勾股定理的应用,熟练掌握在直角三角形中,斜边上的中线等于斜边的一半是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网