题目内容

2.如图,点E、F是正方形ABCD中CD、AD边上的点,CE=DF,试判断BE与CF有怎样的关系?试说明为什么?

分析 如图,首先运用正方形的性质证明BC=CD,∠BCE=∠CDE;其次运用SAS公理证明△BCE≌△CDF,得到∠EBC=∠ECG,BE=CF;运用直角三角形的性质证明∠EGC=90°,即可解决问题.

解答 解:如图,BE⊥CF,BE=CF;
理由如下:
∵四边形ABCD为正方形,
∴BC=CD,∠BCE=∠CDE;
在△BCE与△CDF中,
$\left\{\begin{array}{l}{BC=CD}\\{∠BCE=∠CDF}\\{CE=DF}\end{array}\right.$,
∴△BCE≌△CDF(SAS),
∴∠EBC=∠ECG,BE=CF;
∵∠EBC+∠GEC=90°,
∴∠ECG+∠GEC=90,
∴∠EGC=90°,BE⊥CF,
∴BE=CF,且BE⊥CF.

点评 该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质等几何知识点及其应用为核心构造而成;牢固掌握正方形的性质、全等三角形的判定及其性质等几何知识点是基础,灵活运用、解题是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网