题目内容
19.(1)求证:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的长度.
分析 (1)根据等腰直角三角形的性质得出CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,求出∠ACE=∠BCD,根据SAS推出两三角形全等即可;
(2)根据全等求出AE=BD,∠EAC=∠B=45°,求出∠EAD=90°,在Rt△EAD中,由勾股定理求出AD,即可得出AB的长度.
解答 (1)证明:∵△ACB与△ECD都是等腰直角三角形,
∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,![]()
∴∠ACE=∠BCD=90°-∠ACD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{CE=CD}\\{∠ACE=∠BCD}\\{AC=BC}\end{array}\right.$,
∴△BCD≌△ACE(SAS);
(2)解:∵△BCD≌△ACE,
∴BD=AE=12,∠EAC=∠B=45°,
∴∠EAD=45°+45°=90°,
在Rt△EAD中,由勾股定理得:AD=$\sqrt{D{E}^{2}-A{E}^{2}}$=$\sqrt{1{5}^{2}-1{2}^{2}}$=9,
∴AB=BD+AD=12+9=21.
点评 本题考查了等腰直角三角形的性质,全等三角形的性质和判定,勾股定理的应用,解此题的关键是能求出△ACE≌△BCD和求出AD的长,难度适中.
练习册系列答案
相关题目
10.正比例函数y=3x的大致图象是( )
| A. | B. | C. | D. |
4.解下列不等式组$\left\{\begin{array}{l}{x-2(2x-1)≤5}\\{\frac{1+3x}{2}>2x-1}\end{array}\right.$,并把解集表示在数轴上.