题目内容
不等式组的解集在数轴上表示为( )
A. B. C. D.
A 解:不等式组
由①得,x>1,
由②得,x≥2,
故不等式组的解集为:x≥2,
在数轴上可表示为:
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是( )
海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).
已知关于x的一元二次方程2x2+x+m=0.
(1)当m=1时,判断方程的根的情况;
(2)当m=﹣1时,求方程的根.
在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
如图,矩形ABCD的长为20,宽为14,点O1为矩形的中心,⊙O2的半径为5,O1O2⊥AB于点P,O1O2=23.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边所在的直线相切的位置一共出现( )
A. 18次 B. 12次 C. 8次 D. 4次
计算:(﹣)﹣2+(sin45°)0﹣+|﹣4|
如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )
A. cm B. 4cm C. cm D. cm
题目:已知实数a,x满足a>2且x>2,试判断ax与a+x的大小关系,并加以说明.
思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax﹣(a+x),再说明y的符号即可.
简解:可将y的代数式整理成y=(a﹣1)x﹣a,要判断y的符号可借助函数y=(a﹣1)x﹣a的图象和性质解决.
参考以上解题思路解以下问题:
已知a,b,c都是非负数,a<5,且a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0
(1)分别用含a的代数式表示4b,4c.
(2)根据条件,写出a的取值范围.
(3)理解阅读材料中蕴含的数学思想,试说明a,b,c之间的大小关系.