题目内容

17.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是(  )
A.B.C.D.

分析 对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.

解答 解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;
B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以B选项错误;
C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项正确;
D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以D选项错误;
故选C.

点评 本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(-$\frac{b}{k}$,0).注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网