ÌâÄ¿ÄÚÈÝ
ÌîдÏÂÁпոñ£¬²¢»Ø´ðÎÊÌ⣮
¢Ù·½³Ìx2-2x+1=0µÄÁ½¸ö¸ùΪx1= £¬x2= £¬x1+x2= £¬x1x2= £»
¢Ú·½³Ìx2-3x+2=0µÄÁ½¸ö¸ùΪx1= £¬x2= £¬x1+x2= £¬x1x2= £»
¢Û·½³Ì2x2+3x-2=0µÄÁ½¸ö¸ùΪx1= £¬x2= £¬x1+x2= £¬x1x2= £®
£¨1£©¹Û²ì¢Ù¢Ú¢Û£¬¶ÔÓÚ·½³Ìax2+bx+c=0£¨a¡Ù0£¬b2-4ac¡Ý0£©£¬ÄãÄܵóöʲô²ÂÏ룿
£¨2£©ÀûÓõڣ¨1£©ÌâµÄ½áÂۻشðÏÂÁÐÎÊÌ⣺ÒÑÖª2+
Ϊ·½³Ìx2-4x+c=0µÄÒ»¸ö¸ù£¬Ç󷽳̵ÄÁíÒ»¸ö¸ùºÍcµÄÖµ£®
¢Ù·½³Ìx2-2x+1=0µÄÁ½¸ö¸ùΪx1=
¢Ú·½³Ìx2-3x+2=0µÄÁ½¸ö¸ùΪx1=
¢Û·½³Ì2x2+3x-2=0µÄÁ½¸ö¸ùΪx1=
£¨1£©¹Û²ì¢Ù¢Ú¢Û£¬¶ÔÓÚ·½³Ìax2+bx+c=0£¨a¡Ù0£¬b2-4ac¡Ý0£©£¬ÄãÄܵóöʲô²ÂÏ룿
£¨2£©ÀûÓõڣ¨1£©ÌâµÄ½áÂۻشðÏÂÁÐÎÊÌ⣺ÒÑÖª2+
| 3 |
¿¼µã£º¸ùÓëϵÊýµÄ¹ØÏµ
רÌ⣺¼ÆËãÌâ
·ÖÎö£º£¨1£©ÀûÓÃÒòʽ·Ö½â·¨½â¸÷·½³Ì£¬È»ºó¸ù¾Ý¼ÆËã½á¹ûµÃµ½x1+x2=-
£¬x1•x2=
£»
£¨2£©ÉèÁíÒ»¸ö¸ùΪt£¬¸ù¾Ý£¨1£©µÄ½áÂ۵õ½2+
+t=4£¬£¨2+
£©t=c£¬È»ºóÏȼÆËã³öt£¬ÔÙ¼ÆËãcµÄÖµ£®
| b |
| a |
| c |
| a |
£¨2£©ÉèÁíÒ»¸ö¸ùΪt£¬¸ù¾Ý£¨1£©µÄ½áÂ۵õ½2+
| 3 |
| 3 |
½â´ð£º½â£º£¨1£©²ÂÏëµÄ½á¹ûΪx1+x2=-
£¬x1•x2=
£»
£¨2£©ÉèÁíÒ»¸ö¸ùΪt£¬
Ôò2+
+t=4£¬£¨2+
£©t=c£¬
ËùÒÔt=2-
£¬c=£¨2+
£©£¨2-
£©=4-3=1£®
¹Ê´ð°¸Îª1£¬1£¬2£¬1£»1£¬2£¬3£¬2£»
£¬-2£¬-
£¬-1£®
| b |
| a |
| c |
| a |
£¨2£©ÉèÁíÒ»¸ö¸ùΪt£¬
Ôò2+
| 3 |
| 3 |
ËùÒÔt=2-
| 3 |
| 3 |
| 3 |
¹Ê´ð°¸Îª1£¬1£¬2£¬1£»1£¬2£¬3£¬2£»
| 1 |
| 2 |
| 3 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄ¸ùÓëϵÊýµÄ¹ØÏµ£ºÈô·½³ÌÁ½¸öΪx1£¬x2£¬Ôòx1+x2=-
£¬x1•x2=
£®
| b |
| a |
| c |
| a |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
·½³Ì2x2-8=0µÄ¸ùΪ£¨¡¡¡¡£©
| A¡¢x=-2 | B¡¢x=2 |
| C¡¢x=¡À2 | D¡¢ÒÔÉ϶¼²»¶Ô |
Ö±½ÇÈý½ÇÐÎÁ½ÌõÖ±½Ç±ßµÄºÍΪ7£¬Ãæ»ýÊÇ6£¬Ôòб±ß³¤ÊÇ£¨¡¡¡¡£©
A¡¢
| ||
| B¡¢5 | ||
C¡¢
| ||
| D¡¢7 |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|
Ҫʹ·Öʽ
ÓÐÒâÒ壬ÔòxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| 3x |
| 3x-8 |
A¡¢x=
| ||
B¡¢x£¾
| ||
C¡¢x£¼
| ||
D¡¢x¡Ù
|