题目内容

如图,已知抛物线轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.

(1)求此抛物线的解析式;

(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;

(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

(1) ;(2)E的坐标是; (3)P点的坐标是(-2,-3). 【解析】试题分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值; (2)根据抛物线的解析式可得出C点的坐标,易证得△ABC是直角三角形,则EF⊥BC;△CEF和△BEF同高,则面积比等于底边比,由此可得出CF=2BF;易证得△BEF∽△BAC,根据相似三角形的性质,即可求得BE、AB的比例关系,由此可求...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网