题目内容
16.分析 设S△FBN=a,则S△FNA=ka,设S△ANE=b,则S△CNE=kb,由$\frac{AF}{AB}$=$\frac{k}{k+1}$,△ABC的面积为1,求得S△AFC=$\frac{k}{k+1}$,同理S△AEB=$\frac{1}{k+1}$,列出方程组解出a,b的值,同理S△CDP=S△AEM=a,S△ADC=S△BCF=$\frac{1}{k+1}$,由S△PMN=1-$\frac{3}{k+1}$+3a即可得出△PMN的面积.
解答 解:如图,设S△FBN=a,则S△FNA=ka,
设S△ANE=b,则S△CNE=kb,![]()
∵$\frac{AF}{AB}$=$\frac{k}{k+1}$,△ABC的面积为1,
∴S△AFC=$\frac{k}{k+1}$,同理S△AEB=$\frac{1}{k+1}$,
即$\left\{\begin{array}{l}{ka+b+kb=\frac{k}{k+1}}\\{a+ka+b=\frac{1}{k+1}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{(k+1)({k}^{2}+k+1)}}\\{b=\frac{{k}^{2}}{(k+1)({k}^{2}+k+1)}}\end{array}\right.$,
同理S△CDP=S△AEM=a,S△ADC=S△BCF=$\frac{1}{k+1}$,
∴S△PMN=1-$\frac{3}{k+1}$+3a=1-$\frac{3}{k+1}$+$\frac{3}{(k+1)({k}^{2}+k+1)}$=$\frac{{k}^{2}-2k+1}{{k}^{2}+k+1}$.
故答案为:$\frac{{k}^{2}-2k+1}{{k}^{2}+k+1}$.
点评 本题主要考查了面积及等积变换,解题的关键是求出S△FBN=S△CDP=S△AEM及S△AEB=S△ADC=S△BCF.
| A. | 2.5 | B. | 2.8 | C. | 3 | D. | 3.2 |