题目内容
3.(1)求证:AD∥BE;
(2)若∠B=∠3=2∠2,求∠D的度数.
分析 (1)根据平行线的性质,由AB∥CD得到∠1=∠ACD,则利用三角形外角性质得∠BCD=∠4+∠E,加上∠3=∠4,则∠1=∠E,利用∠1=∠2得到∠2=∠E,然后根据平行线的判定即可得到结论;
(2)利用∠B=∠3=2∠2,∠1=∠2,再根据三角形内角和定理可计算出∠1=36°,则∠B=2∠1=72°,然后根据平行线的性质由AB∥CD得到∠DCE=∠B=72°,再由AD∥BE得到∠D=∠DCE=72°.
解答 (1)证明:∵AB∥CD,
∴∠1=∠ACD,
∵∠BCD=∠4+∠E,
∵∠3=∠4,
∴∠1=∠E,
∵∠1=∠2,
∴∠2=∠E,
∴AD∥BE;
(2)解:∵∠B=∠3=2∠2,∠1=∠2,
∴∠B=∠3=2∠1,
∵∠B+∠3+∠1=180°,
即2∠1+2∠1+∠1=180°,解得∠1=36°,
∴∠B=2∠1=72°,
∵AB∥CD,
∴∠DCE=∠B=72°,
∵AD∥BE,
∴∠D=∠DCE=72°.
点评 本题考查了平行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
练习册系列答案
相关题目
11.某商品的进货成本为每件200元,促销期间,这种商品按原售价的8折出售,此时每卖出一件这种商品,只能获得10%的利润,设这种商品的原来售价是x元,所列方程正确的是( )
| A. | $\frac{0.8x-200}{200}$×100%=10% | B. | $\frac{200-0.8x}{200}$×100%=10% | ||
| C. | $\frac{0.8x-200}{x}$×100%=10% | D. | $\frac{200-0.8x}{x}$×100%=10% |