题目内容

如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;

(2)求该抛物线的对称轴以及顶点坐标;

(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.

(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(,4)或(,4)或(1,﹣4). 【解析】试题分析:(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值. (2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得...
练习册系列答案
相关题目

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m,建立如图所示的直角坐标系,则此抛物线的解析式为___________.

y=-x2 【解析】【解析】 设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10.设点B(10,n),点D(5,n+3),由题意得: ,解得: ,∴. 故答案为: .

如图为某菜农搭建的一个横截面为抛物线的大棚,有关尺寸如图所示,某菜农身高1.6米,则他在不弯腰的情况下在大棚内左右活动的范围是( )

A. 米 B. 米 C. 1.6米 D. 0.8米

B 【解析】如图,设抛物线的解析式为y=a(x-2.5)2+2,由待定系数法求出抛物线的解析式y=- (x-2.5)2+2,将y=1.6时代入解析式得- (x-2.5)2+2=1.6,解得, ,他在不弯腰的情况下在大棚里活动的范围是:x1-x2=. 故选:B.

在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4, 3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标是( )

A.(3,4) B.(-4,3) C.(-3,4) D.(4,-3)

C. 【解析】 试题分析:如图,OA=3,PA=4, 把线段OP绕点O逆时针旋转90°到OP′位置可得OA旋转到x轴负半轴OA′的位置,OB旋转到y轴正半轴OB′的位置,所以P′A′=PA=4,P′B′=PB=3,即可得P′点的坐标为(﹣3,4).故答案选C.

以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是(  )

A. B. C. D.

B 【解析】试题解析:A、不是中心对称图形,本选项错误; B、是中心对称图形,本选项正确; C、不是中心对称图形,本选项错误; D、不是中心对称图形,本选项错误. 故选B.

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求该二次函数图象的顶点坐标和对称轴.

(1) ;(2)顶点坐标为(2,﹣1),对称轴为直线x=2 【解析】试题分析:(1)把已知点的坐标代入解析式,然后解关于b、c的二元一次方程组即可得解;(2)把函数解析式转化为顶点式形式,然后即可写出顶点坐标与对称轴解析式. 试题解析:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0), ∴ , 解得 ; (2)∵该二次函数为y=x2﹣4x+3=(x...

如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

A 【解析】∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确; ∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确; ∵x=2时,y>0,∴4a+2b+c>0,所以③错误; ∵点(﹣5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,∴y1=y2,所以④不正确. 故选:A.

若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为(  )

A. 9 B. 12 C. 9或12 D. 10

B 【解析】由于等腰三角形的底边不确定,所以需要分类讨论, ①当底边长为2时,三边长为2,5,5,则周长为2+5+5=12; ②当底边长为5时,三边长为5,2,2,但5>2+2,不能构成三角形. 故选B.

如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;

(2)求该抛物线的对称轴以及顶点坐标;

(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.

(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(,4)或(,4)或(1,﹣4). 【解析】试题分析:(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值. (2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网