题目内容
15.分析 根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.
解答 解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵DE是AB的垂直平分线,
∴EA=EB,
∴∠EBA=∠A=36°,
∴∠EBC=36°,
∴∠EBA=∠EBC,
∴BE平分∠ABC,①正确;
∠BEC=∠EBA+∠A=72°,
∴∠BEC=∠C,
∴BE=BC,
∴AE=BE=BC,②正确;
△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;
∵BE>EC,AE=BE,
∴AE>EC,
∴点E不是AC的中点,④错误,
故答案为:①②③.
点评 本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
练习册系列答案
相关题目
10.小刚每天从家骑自行车上学都经过三个路口,且每个路口都安装有红灯、绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
4.已知点A(m+3,2)与点B(1,n-1)关于x轴对称,m=( ),n=( )
| A. | -4,3 | B. | -2,-1 | C. | 4,-3 | D. | 2,1 |