题目内容

4.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,$\frac{1}{2}$AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.
(1)求证:D是$\widehat{AE}$的中点;
(2)求证:∠DAO=∠B+∠BAD.

分析 (1)根据圆同弧或等弧所对的圆周角相等,可以证明该结论;
(2)根据OD∥BC,OD=OA,可以得到角的关系,然后通过转化就可以证明结论.

解答 (1)∵由已知可得,OD∥BC,OD=OC,
∴∠ODC=∠DCE,∠ODC=∠OCD,
∴∠OCD=∠DCE,
∴弧AD=弧DE,
即D是$\widehat{AE}$的中点;
(2)证明:延长AD与BC交于点G,如下图所示,

∵OD∥BC,OD=OA,
∴∠ADO=∠AGE,∠ADO=∠DAO,
∴∠AGE=∠DAO,
∵∠AGE=∠B+∠BAD,
∴∠DAO=∠B+∠BAD.

点评 本题考查圆周角定理,圆心角、弧、弦的关系、平行线的性质,三角形的外角与内角的关系,解题的关键是明确题意,找出所求结论需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网