题目内容
4.(1)求证:D是$\widehat{AE}$的中点;
(2)求证:∠DAO=∠B+∠BAD.
分析 (1)根据圆同弧或等弧所对的圆周角相等,可以证明该结论;
(2)根据OD∥BC,OD=OA,可以得到角的关系,然后通过转化就可以证明结论.
解答 (1)∵由已知可得,OD∥BC,OD=OC,
∴∠ODC=∠DCE,∠ODC=∠OCD,
∴∠OCD=∠DCE,
∴弧AD=弧DE,
即D是$\widehat{AE}$的中点;
(2)证明:延长AD与BC交于点G,如下图所示,![]()
∵OD∥BC,OD=OA,
∴∠ADO=∠AGE,∠ADO=∠DAO,
∴∠AGE=∠DAO,
∵∠AGE=∠B+∠BAD,
∴∠DAO=∠B+∠BAD.
点评 本题考查圆周角定理,圆心角、弧、弦的关系、平行线的性质,三角形的外角与内角的关系,解题的关键是明确题意,找出所求结论需要的条件.
练习册系列答案
相关题目
13.
如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为( )
| A. | 2+$\sqrt{2}$ | B. | 2+$\frac{\sqrt{2}}{2}$ | C. | 1 | D. | 2 |