题目内容
考点:切线的判定
专题:
分析:直线CD与⊙O相切.连接OC,根据OA=OC,推出∠BAC=∠OCA,求出∠OCA=∠CAM,推出OC∥AM,求出OC⊥CD,根据切线的判定推出即可.
解答:解:直线CD与⊙O相切.
理由如下:连接OC.
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BAC=∠CAM,
∴∠OCA=∠CAM,
∴OC∥AM,
∵CD⊥AM,
∴OC⊥CD,
∵OC为半径,
∴直线CD与⊙O相切.
理由如下:连接OC.
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BAC=∠CAM,
∴∠OCA=∠CAM,
∴OC∥AM,
∵CD⊥AM,
∴OC⊥CD,
∵OC为半径,
∴直线CD与⊙O相切.
点评:本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目
的玻璃,那么最省事的方法是带③去,依据是三角形的全等判定( )
| A、SAS | B、ASA |
| C、SSS | D、AAS |