题目内容

如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为(  )
A、4
B、3
2
C、4.5
D、5
考点:翻折变换(折叠问题),勾股定理的应用
专题:
分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.
解答:解:∵点C′是AB边的中点,AB=6,
∴BC′=3,
由图形折叠特性知,C′F=CF=BC-BF=9-BF,
在Rt△C′BF中,BF2+BC′2=C′F2
∴BF2+9=(9-BF)2
解得,BF=4,
故选:A.
点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网