题目内容
已知abc≠0,且a+b+c=0,则代数式
+
+
的值是( )
| a2 |
| bc |
| b2 |
| ca |
| c2 |
| ab |
| A、3 | B、2 | C、1 | D、0 |
分析:由a+b+c=0,则a=-(b+c),b=-(a+c),c=-(a+b),代入所求分式即可得出答案.
解答:解:把a=-(b+c),b=-(a+c),c=-(a+b)代入,
原式=
+
+
=-(
)-(
)-(
)
=-(
+
)-(
+
)-(
+
)
=
+
+
=
+
+
=3.
故选A.
原式=
| -(b+c)•a |
| bc |
| -(a+c)•b |
| ac |
| -(a+b)•c |
| ab |
=-(
| ba+ca |
| bc |
| ab+cb |
| ac |
| ac+bc |
| ab |
=-(
| a |
| b |
| a |
| c |
| b |
| a |
| b |
| c |
| c |
| a |
| c |
| b |
=
| -(b+c) |
| a |
| -(a+c) |
| b |
| -(a+b) |
| c |
=
| a |
| a |
| b |
| b |
| c |
| c |
故选A.
点评:本题考查了分式的化简求值,属于基础题,主要是由已知条件先变形后再代入化简.
练习册系列答案
相关题目