题目内容
若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x3项且含x项的系数是-3,求:a,b的值.
分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中x3项且含x项的系数是-3,建立关于a,b等式,即可求出.
解答:解:∵(x2+ax+8)(x2-3x+b)
=x4+(-3+a)x3+(b-3a+8)x2-(-ab+24)x+8b,
又∵不含x3项且含x项的系数是-3,
∴
,
解得
.
=x4+(-3+a)x3+(b-3a+8)x2-(-ab+24)x+8b,
又∵不含x3项且含x项的系数是-3,
∴
|
解得
|
点评:本题考查了多项式乘以多项式,根据不含x3项且含x项的系数是-3列式求解a、b的值是解题的关键.
练习册系列答案
相关题目