题目内容
已知关于x的方程x2+2(m+2)x+m2-5=0有两个实数根,且这两个根的平方和比这两个根的积大16,求m的值.
考点:根与系数的关系,根的判别式
专题:计算题
分析:根据判别式的意义可求得m≥-
,设方程两根为a、b,根据根与系数的关系得到a+b=-2(m+2),ab=m2-5,再利用这两个根的平方和比这两个根的积大16得到(a+b)2-3ab-16=0,所以4(m+2)2-3(m2-5)-16=0,然后解m的方程得到m1=-1,m2=-15,再利用m的范围确定m的值.
| 9 |
| 4 |
解答:解:根据题意得△=4(m+2)2-4(m2-5)≥0,解得m≥-
,
设方程两根为a、b,则a+b=-2(m+2),ab=m2-5,
∵a2+b2=ab+16,
∴(a+b)2-3ab-16=0,
∴4(m+2)2-3(m2-5)-16=0,
整理得m2+16m+15=0,解得m1=-1,m2=-15,
∴m的值为-1.
| 9 |
| 4 |
设方程两根为a、b,则a+b=-2(m+2),ab=m2-5,
∵a2+b2=ab+16,
∴(a+b)2-3ab-16=0,
∴4(m+2)2-3(m2-5)-16=0,
整理得m2+16m+15=0,解得m1=-1,m2=-15,
∴m的值为-1.
点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-
,x1x2=
.也考查了根的判别式.
| b |
| a |
| c |
| a |
练习册系列答案
相关题目