题目内容

9.在Rt△ABC中,∠C=90°,中线AD,CE相交于G,且CG=3,则AB=9.

分析 根据重心的概念得到点G是△ABC的重心,根据重心的性质求出GE,得到CE,根据在直角三角形中,斜边上的中线等于斜边的一半解答即可.

解答 解:∵中线AD,CE相交于G,
∴点G是△ABC的重心,
∴GE=$\frac{1}{2}$CG=1.5,
∴CE=CG+GE=4.5,
∵∠C=90°,CE是中线,
∴AB=2CE=9.
故答案为:9.

点评 本题考查的是三角形的重心的概念和性质、直角三角形的性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,在直角三角形中,斜边上的中线等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网