题目内容
12.(1)请在图中画出平移后的△A′B′C′;
(2)画出平移后的△A′B′C′的中线B′D′
(3)若连接BB′,CC′,则这两条线段的关系是BB′∥CC′,BB′=CC′
(4)△ABC在整个平移过程中线段AB扫过的面积为12
(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有10个
(注:格点指网格线的交点)
分析 (1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;
(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;
(3)根据平移的性质求解;
(4)利用平移的性质和平行四边形的面积公式求解;
(5)过点C作AB的平行线,然后找出此平行线上的格点即可.
解答 解:(1)如图,△A′B′C′为所作;
(2)如图,中线B′D′为所作;
(3)BB′∥CC′,BB′=CC′;
(4)△ABC在整个平移过程中线段AB扫过的面积=4×3=12;
(5)满足条件且异于点C的格点E共有10个.![]()
故答案为BB′∥CC′,BB′=CC′;12;10.
点评 本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
练习册系列答案
相关题目
1.如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全表:
(2)填空:由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=$\frac{1}{2}$;当α=135°时,S=S=$\frac{\sqrt{2}}{2}$.由上表可以得到S(60°)=S(120°);S(30°)=S(30°),…,由此可以归纳出S(α)=(α°).
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
(1)请补全表:
| α | 30° | 45° | 60° | 90° | 120° | 135° | 150° |
| S | $\frac{1}{2}$ | 1 | $\frac{\sqrt{2}}{2}$ |
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).